72 research outputs found

    Multigrid Preconditioning for a Space-Time Spectral-Element Discontinuous-Galerkin Solver

    Get PDF
    In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined

    Parallel High-Order Anisotropic Meshing Using Discrete Metric Tensors

    Get PDF
    This paper presents a metric-aligned meshing algorithm that relies on the Lp-Centroidal Voronoi Tesselation approach. A prototype of this algorithm was first presented at the Scitech conference of 2018 and this work is an extension to that paper. At the end of the previously presented work, a set of problems were mentioned which we are trying to address in this paper. First, we show a significant improvement in code performance since we were limited to present relatively benign (analytical) test cases. Second, we demonstrate here that we are able to rely on discrete metric data that is delivered by a Computational Fluid Dynamics (CFD) solver. Third, we demonstrate how to generate high-order curved elements that are aligned with the underlying discrete metric field

    Numerical simulation of the flow about the F-18 HARV at high angle of attack

    Get PDF
    As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range

    Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Get PDF
    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows

    Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Get PDF
    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s

    A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Get PDF
    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases

    DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method

    Get PDF
    Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modelin

    Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables

    Get PDF
    Turbulent flows have a large range of spatial and temporal scales which need to be resolved in order to obtain accurate predictions. Higher-order methods can provide greater efficiency for simulations requiring high spatial and temporal resolution, allowing for solutions with fewer degrees of freedom and lower computational cost than traditional second-order computational fluid dynamics (CFD) methods.1 Higher-order methods have been widely used for turbulent flows. However, the reduced numerical stabilization present in higher-order schemes implies that special care needs to be taken in the development of numerical methods to suppress nonlinear instabilities.26 In this work we present the development of a higher-order space-time discontinuous Galerkin method with a focus on the aspects of our numerical scheme required for ensuring nonlinear stability for turbulent simulations at high Reynolds numbers
    corecore